Intermediate state during the crystal transition in aspartame, studied with thermal analysis, solid-state NMR, and molecular dynamics simulation.

نویسندگان

  • K Ebisawa
  • N Nagashima
  • K Fukuhara
  • S Kumon
  • S Kishimoto
  • E Suzuki
  • S Yoneda
  • H Umeyama
چکیده

Aspartame (L-alpha-aspartyl-L-phenylalanine methyl ester) is a dipeptide sweetener about 200 times as sweet as sugar. It exists in crystal forms such as IA, IB, IIA, and IIB, which differ in crystal structure and in the degree of hydration. Among these, IIA is the most stable crystal form, and its crystal structure has been well determined (Hatada et al., J. Am. Chem. Soc., 107, 4279-4282 (1985)). To elucidate the structural factors of thermal stability in the IIA form of aspartame and to examine the physical process in the crystal transformation between the IIA and IIB forms, we performed a thermal analysis and solid-state NMR measurements. We found that a quasi-stable intermediate state exists in the transformation, and it has the same crystal lattice as the usual IIA form, despite the dehydration from 1/2 mol to 1/3 mol per 1 mol of aspartame. The results of the energy component analysis and the molecular dynamics simulation suggest that the entropic effect promotes the generation of the intermediate state, which is presumably caused by the evaporation of the water of crystallization and the increase of molecular motion in aspartame. Thus, the thermal stability of the IIA form is attributable to a structural property, i.e., the crystal lattice itself is retained during the above dehydration. Moreover, the molecular dynamics simulations suggest that the aspartame molecules have two kinds of conformational flexibility in the intermediate state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration

Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...

متن کامل

Plumbum(II) and Zinc(II) Complexes with 5-Chlorosalicylic Acid: Structure and Propertie

Abstract: Two new transition metal complexes, containing the acidic ligand 5-chlorosalicylic acid (H2L5), and 1,10-phenanthroline(phen) and 1,3-Di(4-pyridyl)propane (bpp) as secondary ligands are reported. They are formulated as {[Pb(HL5)2(phen)(H2O)]·H2O}n(1), [Zn2(HL5)4(bpp)2]n(2). All the complexes are characterized by single-crystal X-ray diffractions. Compoud 1 crystallizes in the triclini...

متن کامل

Molecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces

In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...

متن کامل

Molecular dynamics simulation of a binary mixture lubricant for use in hard disk interfaces

In Hard Disk Drives (HDD), it is necessary to decrease the Flying Height (FH) between the head and the disk (currently, FH is around 3-5 nm) so as to increase recording densities. Retaining the solid lubricant has become a difficult proposition owing to intermittent contact between the surfaces. ZTMD and Z are used as solid lubricant to lubricate these interfaces. In this paper, the behavior of...

متن کامل

Solid State Process for Preparation of Nickel Oxide Nanoparticles: Characterization and Optical Study

In the present work, we report preparation of NiO nanoparticles with well-defined plate morphology by solid-state reaction of NiCl2∙6H2O and the Schiff base ligand N,N′-bis-(3-methoxysalicylidene)benzene-1,4-diamine), as a novel precursor via solid state thermal decomposition method. This method is a simple and environmentally friendly for preparing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical & pharmaceutical bulletin

دوره 48 5  شماره 

صفحات  -

تاریخ انتشار 2000